T-A G-v-H D Market Trends: Gamma to X-ray to Pathogen Inactivation

AABB Annual Meeting & CTTXPO 2011
San Diego, CA
October 22-25, 2011

Paul V. Holland, M.D.
Clinical Professor of Medicine & Pathology
University of California, Davis Medical Center
Sacramento, California
Scientific Director, Delta Blood Bank
Stockton, California

With thanks to Susan Leitman, MD, Dept. of Transfusion Medicine, NIH, Bethesda, MD
Conflicts of interest (financial)

- PacifiCord: Medical Director
- ISP (now Ashland Specialty Ingredients): Consultant
- Chiron/Novartis: Consultant
61 year old woman with chronic lymphocytic leukemia (CLL)

- Many courses of chemotherapy over years (including fludarabine)
- Autologous PBSC transplant as part of experimental protocol – discharged
- Admitted to community hospital with fever, pancytopenia
- Transfused with 1 packed RBC and 3
3 days later, onset of fever and rash

Admitted to university hospital where PBSC transplant was performed

Consultation by Hem/Onc Fellow who recently completed rotation at regional blood centers
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient pre Tx</td>
<td>1, 2</td>
<td>44, 60</td>
<td>11, 13</td>
</tr>
<tr>
<td>Patient post Tx</td>
<td>2</td>
<td>18, 60</td>
<td>3, 8, 11, 13</td>
</tr>
<tr>
<td>Implicated Donor RBCs</td>
<td>2</td>
<td>18, 60</td>
<td>3, 8</td>
</tr>
<tr>
<td>Other Donor platelets</td>
<td>2, 24</td>
<td>35, 51</td>
<td></td>
</tr>
<tr>
<td>Other Donor platelets</td>
<td>1, 26</td>
<td>8, 60</td>
<td>1, 3</td>
</tr>
<tr>
<td>Other Donor platelets</td>
<td>3, 30</td>
<td>35, 49</td>
<td>1, 13</td>
</tr>
</tbody>
</table>
Transfusion-Associated Graft versus Host Disease

- Rare but devastating complication of transfusion
- Mediated by immunocompetent transfused T-lymphocytes, which engraft, proliferate, and mount a severe immune reaction targeted against the HLA antigens of the host
- Host may be:
 - (1) severely immunocompromised
Patients at Risk of TA-GVHD

- Recipients of intrauterine transfusions (fetus)
- Recipients of postnatal exchange transfusions (neonates, HDN)
- Infants & children with severe congenital immunodeficiency states (SCID, WAS)
- Hematopoietic transplant recipients (allogeneic, autologous)
- Patients with hematologic malignancies (lymphoma, leukemia)
- Patients with solid tumors
- Patients receiving purine analogues
 - Fludarabine, cladribine, pentostatin
- Recipients of HLA-homozygous, haploidentical blood
Key distinguishing features of acute G-v-H D after transfusion and after stem cell transplantation (SCT)

<table>
<thead>
<tr>
<th></th>
<th>Transfusion</th>
<th>SCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>0.1 – 1.0%</td>
<td>30 – 70%</td>
</tr>
<tr>
<td>Onset</td>
<td>2 – 47 days</td>
<td>35 – 70 days</td>
</tr>
<tr>
<td>Pancytopenia</td>
<td>Frequent</td>
<td>Rare</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>Hypocellular</td>
<td>Not affected</td>
</tr>
<tr>
<td>Duration</td>
<td><54 days</td>
<td>Months</td>
</tr>
</tbody>
</table>
Frequency of Transfusion From HLA Homozygous Donor to Recipient Heterozygous for that Haplotype Among Different Populations

<table>
<thead>
<tr>
<th>Population</th>
<th>Parent/Child</th>
<th>Sibling</th>
<th>Unrelated</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Whites</td>
<td>1:475</td>
<td>1:902</td>
<td>1:7174</td>
</tr>
<tr>
<td>Japanese</td>
<td>1:102</td>
<td>1:193</td>
<td>1:874</td>
</tr>
<tr>
<td>Canadian Whites</td>
<td>1:154</td>
<td>1:294</td>
<td>1:1664</td>
</tr>
<tr>
<td>Germans</td>
<td>1:220</td>
<td>1:424</td>
<td>1:3144</td>
</tr>
<tr>
<td>Koreans</td>
<td>1:183</td>
<td>1:356</td>
<td>1:3220</td>
</tr>
<tr>
<td>Spanish</td>
<td>1:226</td>
<td>1:438</td>
<td>1:3552</td>
</tr>
<tr>
<td>Italian</td>
<td>1:434</td>
<td>1:854</td>
<td>1:12870</td>
</tr>
</tbody>
</table>
Paling Risk Scale for Major Transfusion Hazards

10^8 | 10^7 | 10^6 | 10^5 | 10^4 | 10^3 | 10^2 | 10^1 | 10^0

West Nile

HIV
HCV
HBV
Bacteria
TRALI
TA-GVHD
Mis-Transfusion

Selected patient groups

Metabolic risk in neonates

Cardiac toxicity
Preventing T-A G-v-H D

- Leukocyte Reduction – reduces but doesn’t eliminate risk
- Pathogen Inactivation/reduction using photochemistry - YES
- Irradiation (gamma or X-ray) – YES
Williamson LM et al. The impact of universal leukodepletion of the blood supply on hemovigilance reports of posttransfusion purpura and transfusion-associated graft-versus-host disease.

Transfusion. 2007;47:1455-67
Universal leukodepletion (LD) pre PTP and T-A G-v-H D

<table>
<thead>
<tr>
<th></th>
<th>Pre LD</th>
<th>Post LD</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTP</td>
<td>10.3/yr*</td>
<td>2.3/yr**</td>
<td><.001</td>
</tr>
<tr>
<td>T-A G-v-H D</td>
<td>11</td>
<td>2</td>
<td><.001</td>
</tr>
</tbody>
</table>

* 1/31 (3%) received platelets
Photochemistry treatment of blood = chemical + light (UV)

- Crosslinking of DNA or RNA in microbes = pathogen inactivation (PI)
- Crosslinking of DNA in leukocytes = prevention of G-v-H D following a transfusion
Pathogen inactivation as an alternative to current TA-GvHD safeguards

- Gamma irradiation can inactivate residual donor leukocytes if administered in sufficient dosage (2,500 cGy)1
 - TA-GvHD reported after gamma irradiation with 2,000 cGy2
 - Protection relies upon identifying those patients who are at risk, so gamma-irradiated units can be provided
Pathogen inactivation as an alternative to current TA-GvHD safeguards

- Treatment with the INTERCEPT Blood System can inactivate donor leukocytes completely even if administered in a dose 3000-fold smaller than nominal
 - Treatment with the INTERCEPT Blood System not only prevents leukocyte replication, but also inhibits cytokine production³

- INTERCEPT treatment of units provide protection from TA-GvHD, as well as transfusion-transmitted infections like CMV and bacteria
INTERCEPT PI treatment offers increased safety margins vs. gamma irradiation.

Gamma irradiation
Inactivation analyzed using LDA\(^1,2\)

INTERCEPT
Inactivation analyzed using LDA at 1.4J/cm\(^2\) \(^3\)

- **Safety Limit** (No TA-GVHD)
 - Radiation dose (cGy)
 - 2,500 cGy

- **Safety Windows**
 - Amotosalen concentration (μM)
 - 150 μM
 - 3 J/cm\(^2\)
Lin L, Corash L, Osselaer J C.

Protection against TA-GvHD due to platelet transfusion using pathogen inactivation with the Intercept blood system™ – Gamma irradiation is not the only answer.

<table>
<thead>
<tr>
<th>Study</th>
<th># of transfusion</th>
<th>Non-gamma irradiated</th>
<th># of patients</th>
<th>Hem-Onc patients</th>
<th>HSCT patients</th>
<th>Incidence of TA-GvHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase III Trials</td>
<td>575</td>
<td>100%</td>
<td>87</td>
<td>82</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>HV1</td>
<td>5,106</td>
<td>97.3%</td>
<td>651</td>
<td>378</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>HV2</td>
<td>7,437</td>
<td>98.9%</td>
<td>1400</td>
<td>748</td>
<td>121</td>
<td>0</td>
</tr>
<tr>
<td>Mont Godinne</td>
<td>3,645</td>
<td>100%</td>
<td>186</td>
<td>186</td>
<td>186</td>
<td>0</td>
</tr>
<tr>
<td>Pediatric</td>
<td>500</td>
<td>100%</td>
<td>83</td>
<td>48</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Basel</td>
<td>551</td>
<td>100%</td>
<td>46</td>
<td>38</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>
3 groups studied using hemovigilance program:

- Apheresis platelets and buffy coat platelets plus irradiation (2050 patients)
- Same platelets using additive solution plus irradiation (1678 patients)
- Same platelets using additive solution and PI but no irradiation (2069 patients)
Cazenave et al.

Results:
1. Platelet and RBC use per patient not increased after PI implemented.
2. Incidence of acute transfusion reactions was significantly reduced ($p < .001$) after PI implemented.
3. No cases of TA-G-v-HD.
Platelets and plasma indicators for UVA

Vox Sang 2010;99:402
Blood component irradiation alternatives

- Cobalt-60 Source (or linear accelerator unit) in Radiation Therapy Dept.
- Cesium-137 Source in Blood Bank/Center
- X-ray source in Blood Bank/Center
Irradiation of Blood Components

Dose: 2500 cGy

Storage:
- RBCs lose viability with increasing storage time following irradiation
- Irradiate immediately prior to issue
- Irradiation preferably performed in hospital Blood Banks rather than in Regional Blood Centers
How widely is Blood Irradiation Practiced? Is there a role for Universal Irradiation?

- Approximately 10-15% of red cell units are irradiated in U.S. (2009 NBCUS)
- Irradiation increases the average cost/unit by about $65
- Comprehensive cancer centers and pediatric cancer centers (20-25
Advantages

- Homogeneous dose distribution

Disadvantages

- Blood units must leave blood bank for uncertain length of time, uncertain temp control; difficult coordination, delays
Blood component irradiation:
Cobalt-60 source in radiation therapy

Need to purchase gamma or x-ray irradiation equipment

Inconvenient

Dose uncertainty

Expensive to perform
Blood component irradiation: Cesium-137 source in blood bank/center

One-time capital expenditure

Convenient to use

Dose certain

Long half-life of Cesium-137

Minimal maintenance
Gamma Irradiators – Gamma Emitters
(Sodium-137, cobalt-60 sources)

% of blood irradiated in US: CsCl source

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Device</th>
<th>Radiation source</th>
<th>Strength (Ci)</th>
<th>Chamber size (L)</th>
<th>Central dose rate (cGy/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBL-437C</td>
<td>Gammacell 1000</td>
<td>Cs-137</td>
<td>5100</td>
<td>3.8</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>Gammacell 3000</td>
<td>Cs-137</td>
<td>2500</td>
<td>1.0</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>Model 143-45</td>
<td>Cs-137</td>
<td>2200</td>
<td>1.4</td>
<td>1250</td>
</tr>
<tr>
<td>Other</td>
<td>Model 143-45A</td>
<td>Cs-137</td>
<td>4000</td>
<td>3.7</td>
<td>1080</td>
</tr>
<tr>
<td></td>
<td>Model 143-68</td>
<td>Co-60</td>
<td>2000</td>
<td>3.2</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>Model 109C</td>
<td>Co-60</td>
<td>1800</td>
<td>1.0</td>
<td>940</td>
</tr>
</tbody>
</table>

Cs-137 source t = 30.2 years, Cobalt-60 source t = 5 years
Protection of CsCl Sources from Misuse

Background security checks on all staff with unescorted access to irradiator

Constant surveillance by security cameras to immediately detect & respond to unauthorized access

Retrofit device with security enhancements (DOE); Permanent welded closure of rear of irradiator; access to isotopes extremely
Surveillance cameras

Example of Transfusion Line Security Features
Blood component irradiation: X-ray unit in blood bank/center

One-time capital expenditure

Convenient to use

Dose certain

Not radioactive

Moderate maintenance
X-ray Irradiator
(Raycell, Best Theratronics)

- X-ray source
- No NRC license
- 1,566 lbs
- 5 minutes/ 25 Gy cycle
- 1.5 L (2 bags) canister
New!

X-ray Irradiator
(RS 3400 Revolution, Rad Source Technologies)

- X-ray source
- No NRC license
- 1,475 lbs
- 6 minutes/ 25 Gy cycle
- 1-5 500 ml bags cycle
DOSE DISTRIBUTION IN SIMULATED COMPONENTS

Linear Accelerator
Unidirectional, Single Layer

IBL 437C
Lucite Spacer

Gammacell 3000
Lucite Spacer
Estimated cost to switch from a CsCl irradiator to an X-ray irradiator:

- Price of X-ray instrument: $200,000
- Annual maint. Contract: $22,000
- Decommissioning a CsCl irradiator (takes 3-12 mo): $40,000
Use specific indicators for gamma and X-ray irradiation

ISBT 128 Bar Coded Lot Numbers
Gamma Indicators

ISBT 128 Bar Coded Lot Numbers
Gamma Indicators
T-A G-v-H D - summary

• Begins 2-50 days after transfusion
 Fever
 Rash
 Diarrhea
 Liver disease

• Death within 3 weeks (infection 2\(^o\) BM failure)

Prevention can save lives!
References

